
Ensuring Distributed Accountability
for Data Sharing in the Cloud

Smitha Sundareswaran, Anna C. Squicciarini, Member, IEEE, and Dan Lin

Abstract—Cloud computing enables highly scalable services to be easily consumed over the Internet on an as-needed basis. A major

feature of the cloud services is that users’ data are usually processed remotely in unknown machines that users do not own or operate.

While enjoying the convenience brought by this new emerging technology, users’ fears of losing control of their own data (particularly,

financial and health data) can become a significant barrier to the wide adoption of cloud services. To address this problem, in this

paper, we propose a novel highly decentralized information accountability framework to keep track of the actual usage of the users’

data in the cloud. In particular, we propose an object-centered approach that enables enclosing our logging mechanism together with

users’ data and policies. We leverage the JAR programmable capabilities to both create a dynamic and traveling object, and to ensure

that any access to users’ data will trigger authentication and automated logging local to the JARs. To strengthen user’s control, we also

provide distributed auditing mechanisms. We provide extensive experimental studies that demonstrate the efficiency and effectiveness

of the proposed approaches.

Index Terms—Cloud computing, accountability, data sharing.

Ç

1 INTRODUCTION

CLOUD computing presents a new way to supplement the
current consumption and delivery model for IT

services based on the Internet, by providing for dynamically
scalable and often virtualized resources as a service over the
Internet. To date, there are a number of notable commercial
and individual cloud computing services, including Ama-
zon, Google, Microsoft, Yahoo, and Salesforce [19]. Details
of the services provided are abstracted from the users who
no longer need to be experts of technology infrastructure.
Moreover, users may not know the machines which actually
process and host their data. While enjoying the convenience
brought by this new technology, users also start worrying
about losing control of their own data. The data processed
on clouds are often outsourced, leading to a number of
issues related to accountability, including the handling of
personally identifiable information. Such fears are becom-
ing a significant barrier to the wide adoption of cloud
services [30].

To allay users’ concerns, it is essential to provide an
effective mechanism for users to monitor the usage of their
data in the cloud. For example, users need to be able to
ensure that their data are handled according to the service-
level agreements made at the time they sign on for services
in the cloud. Conventional access control approaches
developed for closed domains such as databases and
operating systems, or approaches using a centralized server
in distributed environments, are not suitable, due to the

following features characterizing cloud environments. First,
data handling can be outsourced by the direct cloud service
provider (CSP) to other entities in the cloud and theses
entities can also delegate the tasks to others, and so on.
Second, entities are allowed to join and leave the cloud in a
flexible manner. As a result, data handling in the cloud goes
through a complex and dynamic hierarchical service chain
which does not exist in conventional environments.

To overcome the above problems, we propose a novel
approach, namely Cloud Information Accountability (CIA)
framework, based on the notion of information accountability
[44]. Unlike privacy protection technologies which are built
on the hide-it-or-lose-it perspective, information account-
ability focuses on keeping the data usage transparent and
trackable. Our proposed CIA framework provides end-to-
end accountability in a highly distributed fashion. One of the
main innovative features of the CIA framework lies in its
ability of maintaining lightweight and powerful account-
ability that combines aspects of access control, usage control
and authentication. By means of the CIA, data owners can
track not only whether or not the service-level agreements are
being honored, but also enforce access and usage control
rules as needed. Associated with the accountability feature,
we also develop two distinct modes for auditing: push mode
and pull mode. The push mode refers to logs being
periodically sent to the data owner or stakeholder while the
pull mode refers to an alternative approach whereby the user
(or another authorized party) can retrieve the logs as needed.

The design of the CIA framework presents substantial
challenges, including uniquely identifying CSPs, ensuring
the reliability of the log, adapting to a highly decentralized
infrastructure, etc. Our basic approach toward addressing
these issues is to leverage and extend the programmable
capability of JAR (Java ARchives) files to automatically log
the usage of the users’ data by any entity in the cloud. Users
will send their data along with any policies such as access
control policies and logging policies that they want to

. S. Sundareswaran and A.C. Squicciarini are with the College of
Information Sciences and Technology, The Pennsylvania State University,
University Park, PA 16802. E-mail: {sus263, asquicciarini}@ist.psu.edu.

. D. Lin is with the Department of Computer Science, Missouri University
of Science & Technology, Rolla, MO 65409. E-mail: lindan@mst.edu.

Manuscript received 30 June 2011; revised 31 Jan. 2012; accepted 17 Feb.
2012; published online 2 Mar. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2011-06-0169.
Digital Object Identifier no. 10.1109/TDSC.2012.26.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL.9 NO.4 YEAR 2012

anand
Sticky Note
2,500+ Projects , IEEE Papers , Abstract , Videos.

Visit www.redpel.com for original IEEE Papers (Without our watermarking)

Projects, abstracts and much more as per your requirement .

Or call us to any project (+917620593389)

-Thanks

anand
Typewritten text
www.redpel.com
+917620593389

enforce, enclosed in JAR files, to cloud service providers.
Any access to the data will trigger an automated and
authenticated logging mechanism local to the JARs. We
refer to this type of enforcement as “strong binding” since
the policies and the logging mechanism travel with the data.
This strong binding exists even when copies of the JARs are
created; thus, the user will have control over his data at any
location. Such decentralized logging mechanism meets the
dynamic nature of the cloud but also imposes challenges on
ensuring the integrity of the logging. To cope with this issue,
we provide the JARs with a central point of contact which
forms a link between them and the user. It records the error
correction information sent by the JARs, which allows it to
monitor the loss of any logs from any of the JARs. Moreover,
if a JAR is not able to contact its central point, any access to
its enclosed data will be denied.

Currently, we focus on image files since images represent
a very common content type for end users and organiza-
tions (as is proven by the popularity of Flickr [14]) and are
increasingly hosted in the cloud as part of the storage
services offered by the utility computing paradigm featured
by cloud computing. Further, images often reveal social and
personal habits of users, or are used for archiving important
files from organizations. In addition, our approach can
handle personal identifiable information provided they are
stored as image files (they contain an image of any textual
content, for example, the SSN stored as a .jpg file).

We tested our CIA framework in a cloud testbed, the
Emulab testbed [42], with Eucalyptus as middleware [41].
Our experiments demonstrate the efficiency, scalability and
granularity of our approach. In addition, we also provide a
detailed security analysis and discuss the reliability and
strength of our architecture in the face of various nontrivial
attacks, launched by malicious users or due to compro-
mised Java Running Environment (JRE).

In summary, our main contributions are as follows:

. We propose a novel automatic and enforceable
logging mechanism in the cloud. To our knowledge,
this is the first time a systematic approach to data
accountability through the novel usage of JAR files is
proposed.

. Our proposed architecture is platform independent
and highly decentralized, in that it does not require
any dedicated authentication or storage system in
place.

. We go beyond traditional access control in that we
provide a certain degree of usage control for the
protected data after these are delivered to the receiver.

. We conduct experiments on a real cloud testbed.
The results demonstrate the efficiency, scalability,
and granularity of our approach. We also provide a
detailed security analysis and discuss the reliability
and strength of our architecture.

This paper is an extension of our previous conference
paper [40]. We have made the following new contributions.
First, we integrated integrity checks and oblivious hashing
(OH) technique to our system in order to strengthen the
dependability of our system in case of compromised JRE.
We also updated the log records structure to provide
additional guarantees of integrity and authenticity. Second,

we extended the security analysis to cover more possible
attack scenarios. Third, we report the results of new
experiments and provide a thorough evaluation of the
system performance. Fourth, we have added a detailed
discussion on related works to prepare readers with a better
understanding of background knowledge. Finally, we have
improved the presentation by adding more examples and
illustration graphs.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 lays out our problem
statement. Section 4 presents our proposed Cloud Informa-
tion Accountability framework, and Sections 5 and 6 describe
the detailed algorithms for automated logging mechanism
and auditing approaches, respectively. Section 7 presents a
security analysis of our framework, followed by an experi-
mental study in Section 8. Finally, Section 9 concludes the
paper and outlines future research directions.

2 RELATED WORK

In this section, we first review related works addressing the
privacy and security issues in the cloud. Then, we briefly
discuss works which adopt similar techniques as our
approach but serve for different purposes.

2.1 Cloud Privacy and Security

Cloud computing has raised a range of important privacy
and security issues [19], [25], [30]. Such issues are due to the
fact that, in the cloud, users’ data and applications
reside—at least for a certain amount of time—on the cloud
cluster which is owned and maintained by a third party.
Concerns arise since in the cloud it is not always clear to
individuals why their personal information is requested or
how it will be used or passed on to other parties. To date,
little work has been done in this space, in particular with
respect to accountability. Pearson et al. have proposed
accountability mechanisms to address privacy concerns of
end users [30] and then develop a privacy manager [31].
Their basic idea is that the user’s private data are sent to the
cloud in an encrypted form, and the processing is done on
the encrypted data. The output of the processing is
deobfuscated by the privacy manager to reveal the correct
result. However, the privacy manager provides only limited
features in that it does not guarantee protection once the
data are being disclosed. In [7], the authors present a
layered architecture for addressing the end-to-end trust
management and accountability problem in federated
systems. The authors’ focus is very different from ours, in
that they mainly leverage trust relationships for account-
ability, along with authentication and anomaly detection.
Further, their solution requires third-party services to
complete the monitoring and focuses on lower level
monitoring of system resources.

Researchers have investigated accountability mostly as a
provable property through cryptographic mechanisms,
particularly in the context of electronic commerce [10], [21].
A representative work in this area is given by [9]. The authors
propose the usage of policies attached to the data and present
a logic for accountability data in distributed settings.
Similarly, Jagadeesan et al. recently proposed a logic for
designing accountability-based distributed systems [20]. In
[10], Crispo and Ruffo proposed an interesting approach

556 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

related to accountability in case of delegation. Delegation is
complementary to our work, in that we do not aim at
controlling the information workflow in the clouds. In a
summary, all these works stay at a theoretical level and do
not include any algorithm for tasks like mandatory logging.

To the best of our knowledge, the only work proposing a
distributed approach to accountability is from Lee and
colleagues [22]. The authors have proposed an agent-based
system specific to grid computing. Distributed jobs, along
with the resource consumption at local machines are
tracked by static software agents. The notion of account-
ability policies in [22] is related to ours, but it is mainly
focused on resource consumption and on tracking of
subjobs processed at multiple computing nodes, rather
than access control.

2.2 Other Related Techniques

With respect to Java-based techniques for security, our
methods are related to self-defending objects (SDO) [17].
Self-defending objects are an extension of the object-oriented
programming paradigm, where software objects that offer
sensitive functions or hold sensitive data are responsible for
protecting those functions/data. Similarly, we also extend
the concepts of object-oriented programming. The key
difference in our implementations is that the authors still
rely on a centralized database to maintain the access records,
while the items being protected are held as separate files. In
previous work, we provided a Java-based approach to
prevent privacy leakage from indexing [39], which could be
integrated with the CIA framework proposed in this work
since they build on related architectures.

In terms of authentication techniques, Appel and Felten
[13] proposed the Proof-Carrying authentication (PCA)
framework. The PCA includes a high order logic language
that allows quantification over predicates, and focuses on
access control for web services. While related to ours to the
extent that it helps maintaining safe, high-performance,
mobile code, the PCA’s goal is highly different from our
research, as it focuses on validating code, rather than
monitoring content. Another work is by Mont et al. who
proposed an approach for strongly coupling content with
access control, using Identity-Based Encryption (IBE) [26].
We also leverage IBE techniques, but in a very different
way. We do not rely on IBE to bind the content with the
rules. Instead, we use it to provide strong guarantees for the
encrypted content and the log files, such as protection
against chosen plaintext and ciphertext attacks.

In addition, our work may look similar to works on
secure data provenance [5], [6], [15], but in fact greatly
differs from them in terms of goals, techniques, and
application domains. Works on data provenance aim to
guarantee data integrity by securing the data provenance.
They ensure that no one can add or remove entries in the
middle of a provenance chain without detection, so that
data are correctly delivered to the receiver. Differently, our
work is to provide data accountability, to monitor the usage
of the data and ensure that any access to the data is tracked.
Since it is in a distributed environment, we also log where
the data go. However, this is not for verifying data integrity,
but rather for auditing whether data receivers use the data
following specified policies.

Along the lines of extended content protection, usage

control [33] is being investigated as an extension of current

access control mechanisms. Current efforts on usage control

are primarily focused on conceptual analysis of usage control

requirements and on languages to express constraints at

various level of granularity [32], [34]. While some notable

results have been achieved in this respect [12], [34], thus far,

there is no concrete contribution addressing the problem of

usage constraints enforcement, especially in distributed

settings [32]. The few existing solutions are partial [12],

[28], [29], restricted to a single domain, and often specialized

[3], [24], [46]. Finally, general outsourcing techniques have

been investigated over the past few years [2], [38]. Although

only [43] is specific to the cloud, some of the outsourcing

protocols may also be applied in this realm. In this work, we

do not cover issues of data storage security which are a

complementary aspect of the privacy issues.

3 PROBLEM STATEMENT

We begin this section by considering an illustrative example

which serves as the basis of our problem statement and will

be used throughout the paper to demonstrate the main

features of our system.

Example 1. Alice, a professional photographer, plans to sell

her photographs by using the SkyHigh Cloud Services.

For her business in the cloud, she has the following

requirements:

. Her photographs are downloaded only by users who
have paid for her services.

. Potential buyers are allowed to view her pictures
first before they make the payment to obtain the
download right.

. Due to the nature of some of her works, only users
from certain countries can view or download some
sets of photographs.

. For some of her works, users are allowed to only
view them for a limited time, so that the users cannot
reproduce her work easily.

. In case any dispute arises with a client, she wants to
have all the access information of that client.

. She wants to ensure that the cloud service providers
of SkyHigh do not share her data with other service
providers, so that the accountability provided for
individual users can also be expected from the cloud
service providers.

With the above scenario in mind, we identify the common

requirements and develop several guidelines to achieve data

accountability in the cloud. A user who subscribed to a

certain cloud service, usually needs to send his/her data as

well as associated access control policies (if any) to the

service provider. After the data are received by the cloud

service provider, the service provider will have granted

access rights, such as read, write, and copy, on the data.

Using conventional access control mechanisms, once the

access rights are granted, the data will be fully available at

the service provider. In order to track the actual usage of the

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 557

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

data, we aim to develop novel logging and auditing
techniques which satisfy the following requirements:

1. The logging should be decentralized in order to
adapt to the dynamic nature of the cloud. More
specifically, log files should be tightly bounded with
the corresponding data being controlled, and require
minimal infrastructural support from any server.

2. Every access to the user’s data should be correctly
and automatically logged. This requires integrated
techniques to authenticate the entity who accesses
the data, verify, and record the actual operations
on the data as well as the time that the data have
been accessed.

3. Log files should be reliable and tamper proof to
avoid illegal insertion, deletion, and modification by
malicious parties. Recovery mechanisms are also
desirable to restore damaged log files caused by
technical problems.

4. Log files should be sent back to their data owners
periodically to inform them of the current usage of
their data. More importantly, log files should be
retrievable anytime by their data owners when
needed regardless the location where the files are
stored.

5. The proposed technique should not intrusively
monitor data recipients’ systems, nor it should
introduce heavy communication and computation
overhead, which otherwise will hinder its feasibility
and adoption in practice.

4 CLOUD INFORMATION ACCOUNTABILITY

In this section, we present an overview of the Cloud
Information Accountability framework and discuss how the
CIA framework meets the design requirements discussed in
the previous section.

The Cloud Information Accountability framework pro-
posed in this work conducts automated logging and dis-
tributed auditing of relevant access performed by any entity,
carried out at any point of time at any cloud service provider.
It has two major components: logger and log harmonizer.

4.1 Major Components

There are two major components of the CIA, the first being
the logger, and the second being the log harmonizer. The
logger is the component which is strongly coupled with
the user’s data, so that it is downloaded when the data are
accessed, and is copied whenever the data are copied. It
handles a particular instance or copy of the user’s data and
is responsible for logging access to that instance or copy.
The log harmonizer forms the central component which
allows the user access to the log files.

The logger is strongly coupled with user’s data (either
single or multiple data items). Its main tasks include
automatically logging access to data items that it contains,
encrypting the log record using the public key of the
content owner, and periodically sending them to the log
harmonizer. It may also be configured to ensure that access
and usage control policies associated with the data are
honored. For example, a data owner can specify that user X
is only allowed to view but not to modify the data. The
logger will control the data access even after it is down-
loaded by user X.

The logger requires only minimal support from the
server (e.g., a valid Java virtual machine installed) in order
to be deployed. The tight coupling between data and logger,
results in a highly distributed logging system, therefore
meeting our first design requirement. Furthermore, since
the logger does not need to be installed on any system or
require any special support from the server, it is not very
intrusive in its actions, thus satisfying our fifth requirement.
Finally, the logger is also responsible for generating the
error correction information for each log record and send
the same to the log harmonizer. The error correction
information combined with the encryption and authentica-
tion mechanism provides a robust and reliable recovery
mechanism, therefore meeting the third requirement.

The log harmonizer is responsible for auditing.
Being the trusted component, the log harmonizer gen-

erates the master key. It holds on to the decryption key for
the IBE key pair, as it is responsible for decrypting the logs.
Alternatively, the decryption can be carried out on the client
end if the path between the log harmonizer and the client is
not trusted. In this case, the harmonizer sends the key to the
client in a secure key exchange.

It supports two auditing strategies: push and pull. Under
the push strategy, the log file is pushed back to the data
owner periodically in an automated fashion. The pull mode
is an on-demand approach, whereby the log file is obtained
by the data owner as often as requested. These two modes
allow us to satisfy the aforementioned fourth design
requirement. In case there exist multiple loggers for the
same set of data items, the log harmonizer will merge log
records from them before sending back to the data owner.
The log harmonizer is also responsible for handling log file
corruption. In addition, the log harmonizer can itself carry
out logging in addition to auditing. Separating the logging
and auditing functions improves the performance. The
logger and the log harmonizer are both implemented as
lightweight and portable JAR files. The JAR file implemen-
tation provides automatic logging functions, which meets
the second design requirement.

4.2 Data Flow

The overall CIA framework, combining data, users, logger
and harmonizer is sketched in Fig. 1. At the beginning, each
user creates a pair of public and private keys based on
Identity-Based Encryption [4] (step 1 in Fig. 1). This IBE
scheme is a Weil-pairing-based IBE scheme, which protects
us against one of the most prevalent attacks to our
architecture as described in Section 7. Using the generated
key, the user will create a logger component which is a JAR
file, to store its data items.

The JAR file includes a set of simple access control rules
specifying whether and how the cloud servers, and possibly
other data stakeholders (users, companies) are authorized
to access the content itself. Then, he sends the JAR file to the
cloud service provider that he subscribes to. To authenticate
the CSP to the JAR (steps 3-5 in Fig. 1), we use OpenSSL-
based certificates, wherein a trusted certificate authority
certifies the CSP. In the event that the access is requested by
a user, we employ SAML-based authentication [8], wherein
a trusted identity provider issues certificates verifying the
user’s identity based on his username.

558 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

Once the authentication succeeds, the service provider (or
the user) will be allowed to access the data enclosed in the
JAR. Depending on the configuration settings defined at the
time of creation, the JAR will provide usage control
associated with logging, or will provide only logging
functionality. As for the logging, each time there is an access
to the data, the JAR will automatically generate a log record,
encrypt it using the public key distributed by the data owner,
and store it along with the data (step 6 in Fig. 1). The
encryption of the log file prevents unauthorized changes to
the file by attackers. The data owner could opt to reuse the
same key pair for all JARs or create different key pairs for
separate JARs. Using separate keys can enhance the security
(detailed discussion is in Section 7) without introducing any
overhead except in the initialization phase. In addition,
some error correction information will be sent to the log
harmonizer to handle possible log file corruption (step 7 in
Fig. 1). To ensure trustworthiness of the logs, each record is
signed by the entity accessing the content. Further, indivi-
dual records are hashed together to create a chain structure,
able to quickly detect possible errors or missing records. The
encrypted log files can later be decrypted and their integrity
verified. They can be accessed by the data owner or other
authorized stakeholders at any time for auditing purposes
with the aid of the log harmonizer (step 8 in Fig. 1).

As discussed in Section 7, our proposed framework
prevents various attacks such as detecting illegal copies of
users’ data. Note that our work is different from traditional
logging methods which use encryption to protect log files.
With only encryption, their logging mechanisms are
neither automatic nor distributed. They require the data
to stay within the boundaries of the centralized system for
the logging to be possible, which is however not suitable in
the cloud.

Example 2. Considering Example 1, Alice can enclose her
photographs and access control policies in a JAR file and
send the JAR file to the cloud service provider. With the
aid of control associated logging (called AccessLog in
Section 5.2), Alice will be able to enforce the first four
requirements and record the actual data access. On a

regular basis, the push-mode auditing mechanism will
inform Alice about the activity on each of her photo-

graphs as this allows her to keep track of her clients’
demographics and the usage of her data by the cloud
service provider. In the event of some dispute with her
clients, Alice can rely on the pull-mode auditing
mechanism to obtain log records.

5 AUTOMATED LOGGING MECHANISM

In this section, we first elaborate on the automated logging
mechanism and then present techniques to guarantee
dependability.

5.1 The Logger Structure

We leverage the programmable capability of JARs to conduct

automated logging. A logger component is a nested Java JAR
file which stores a user’s data items and corresponding log
files. As shown in Fig. 2, our proposed JAR file consists of one
outer JAR enclosing one or more inner JARs.

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 559

Fig. 1. Overview of the cloud information accountability framework.

Fig. 2. The structure of the JAR file.

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

The main responsibility of the outer JAR is to handle
authentication of entities which want to access the data
stored in the JAR file. In our context, the data owners may
not know the exact CSPs that are going to handle the data.
Hence, authentication is specified according to the servers’
functionality (which we assume to be known through a
lookup service), rather than the server’s URL or identity.
For example, a policy may state that Server X is allowed to
download the data if it is a storage server. As discussed
below, the outer JAR may also have the access control
functionality to enforce the data owner’s requirements,
specified as Java policies, on the usage of the data. A Java
policy specifies which permissions are available for a
particular piece of code in a Java application environment.
The permissions expressed in the Java policy are in terms of
File System Permissions. However, the data owner can
specify the permissions in user-centric terms as opposed to
the usual code-centric security offered by Java, using Java
Authentication and Authorization Services. Moreover, the
outer JAR is also in charge of selecting the correct inner JAR
according to the identity of the entity who requests the data.

Example 3. Consider Example 1. Suppose that Alice’s
photographs are classified into three categories accord-
ing to the locations where the photos were taken. The
three groups of photos are stored in three inner JAR J1 ,
J2, and J3 , respectively, associated with different access
control policies. If some entities are allowed to access
only one group of the photos, say J1 , the outer JAR will
just render the corresponding inner JAR to the entity
based on the policy evaluation result.

Each inner JAR contains the encrypted data, class files to
facilitate retrieval of log files and display enclosed data in a
suitable format, and a log file for each encrypted item. We
support two options:

. PureLog. Its main task is to record every access to the
data. The log files are used for pure auditing
purpose.

. AccessLog. It has two functions: logging actions and
enforcing access control. In case an access request is
denied, the JAR will record the time when the request
is made. If the access request is granted, the JAR will
additionally record the access information along with
the duration for which the access is allowed.

The two kinds of logging modules allow the data owner
to enforce certain access conditions either proactively (in
case of AccessLogs) or reactively (in case of PureLogs). For
example, services like billing may just need to use PureLogs.
AccessLogs will be necessary for services which need to
enforce service-level agreements such as limiting the
visibility to some sensitive content at a given location.

To carry out these functions, the inner JAR contains a
class file for writing the log records, another class file which
corresponds with the log harmonizer, the encrypted data, a
third class file for displaying or downloading the data
(based on whether we have a PureLog, or an AccessLog),
and the public key of the IBE key pair that is necessary for
encrypting the log records. No secret keys are ever stored in
the system. The outer JAR may contain one or more inner

JARs, in addition to a class file for authenticating the servers
or the users, another class file finding the correct inner JAR,
a third class file which checks the JVM’s validity using
oblivious hashing. Further, a class file is used for managing
the GUI for user authentication and the Java Policy.

5.2 Log Record Generation

Log records are generated by the logger component.
Logging occurs at any access to the data in the JAR, and
new log entries are appended sequentially, in order of
creation LR ¼ hr1; . . . ; rki. Each record ri is encrypted
individually and appended to the log file. In particular, a
log record takes the following form:

ri ¼ hID;Act; T ; Loc; hððID;Act; T ; LocÞjri � 1j . . . jr1Þ; sigi:

Here, ri indicates that an entity identified by I D has per-
formed an action Act on the user’s data at time T at location
Loc. The component hððID;Act; T ; LocÞjri � 1j . . . jr1Þ corre-
sponds to the checksum of the records preceding the newly
inserted one, concatenated with the main content of the
record itself (we use I to denote concatenation). The checksum
is computed using a collision-free hash function [37]. The
component sig denotes the signature of the record created by
the server. If more than one file is handled by the same logger,
an additional ObjI D field is added to each record. An example
of log record for a single file is shown below.

Example 4. Suppose that a cloud service provider with ID
Kronos, located in USA, read the image in a JAR file (but
did not download it) at 4:52 pm on May 20, 2011. The
corresponding log record is
hKronos, View, 2011-05-29 16:52:30,USA,

45rftT024g, r94gm30130ffi.

The location is converted from the IP address for
improved readability.

To ensure the correctness of the log records, we verify the
access time, locations as well as actions. In particular, the
time of access is determined using the Network Time
Protocol (NTP) [35] to avoid suppression of the correct time
by a malicious entity. The location of the cloud service
provider can be determined using IP address. The JAR can
perform an IP lookup and use the range of the IP address to
find the most probable location of the CSP. More advanced
techniques for determining location can also be used [16].
Similarly, if a trusted time stamp management infrastruc-
ture can be set up or leveraged, it can be used to record the
time stamp in the accountability log [1]. The most critical
part is to log the actions on the users’ data. In the current
system, we support four types of actions, i.e., Act has one of
the following four values: view, download, timed_access, and
Location-based_access. For each action, we propose a specific
method to correctly record or enforce it depending on the
type of the logging module, which are elaborated as follows:

. View. The entity (e.g., the cloud service provider)
can only read the data but is not allowed to save a
raw copy of it anywhere permanently. For this type
of action, the PureLog will simply write a log record
about the access, while the AccessLogs will enforce
the action through the enclosed access control
module. Recall that the data are encrypted and

560 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

stored in the inner JAR. When there is a view-only
access request, the inner JAR will decrypt the data
on the fly and create a temporary decrypted file. The
decrypted file will then be displayed to the entity
using the Java application viewer in case the file is
displayed to a human user. Presenting the data in
the Java application, viewer disables the copying
functions using right click or other hot keys such as
PrintScreen. Further, to prevent the use of some
screen capture software, the data will be hidden
whenever the application viewer screen is out of
focus. The content is displayed using the headless
mode in Java on the command line when it is
presented to a CSP.

. Download. The entity is allowed to save a raw copy of
the data and the entity will have no control over this
copy neither log records regarding access to the copy.

If PureLog is adopted, the user’s data will be
directly downloadable in a pure form using a link.
When an entity clicks this download link, the JAR
file associated with the data will decrypt the data
and give it to the entity in raw form. In case of
AccessLogs, the entire JAR file will be given to the
entity. If the entity is a human user, he/she just
needs to double click the JAR file to obtain the data.
If the entity is a CSP, it can run a simple script to
execute the JAR.

. Timed_access. This action is combined with the
view-only access, and it indicates that the data are
made available only for a certain period of time.

The Purelog will just record the access starting
time and its duration, while the AccessLog will
enforce that the access is allowed only within the
specified period of time. The duration for which the
access is allowed is calculated using the Network
Time Protocol. To enforce the limit on the duration,
the AccessLog records the start time using the NTP,
and then uses a timer to stop the access. Naturally,
this type of access can be enforced only when it is
combined with the View access right and not when it
is combined with the Download.

. Location-based_access. In this case, the PureLog will
record the location of the entities. The AccessLog
will verify the location for each of such access. The
access is granted and the data are made available
only to entities located at locations specified by
the data owner.

5.3 Dependability of Logs

In this section, we discuss how we ensure the dependability
of logs. In particular, we aim to prevent the following two
types of attacks. First, an attacker may try to evade the
auditing mechanism by storing the JARs remotely, corrupt-
ing the JAR, or trying to prevent them from communicating
with the user. Second, the attacker may try to compromise
the JRE used to run the JAR files.

5.3.1 JARs Availability

To protect against attacks perpetrated on offline JARs, the
CIA includes a log harmonizer which has two main
responsibilities: to deal with copies of JARs and to recover
corrupted logs.

Each log harmonizer is in charge of copies of logger
components containing the same set of data items. The
harmonizer is implemented as a JAR file. It does not contain
the user’s data items being audited, but consists of class files
for both a server and a client processes to allow it to
communicate with its logger components. The harmonizer
stores error correction information sent from its logger
components, as well as the user’s IBE decryption key, to
decrypt the log records and handle any duplicate records.
Duplicate records result from copies of the user’s data JARs.
Since user’s data are strongly coupled with the logger
component in a data JAR file, the logger will be copied
together with the user’s data. Consequently, the new copy
of the logger contains the old log records with respect to the
usage of data in the original data JAR file. Such old log
records are redundant and irrelevant to the new copy of the
data. To present the data owner an integrated view,
the harmonizer will merge log records from all copies of
the data JARs by eliminating redundancy.

For recovering purposes, logger components are re-
quired to send error correction information to the harmo-
nizer after writing each log record. Therefore, logger
components always ping the harmonizer before they grant
any access right. If the harmonizer is not reachable, the
logger components will deny all access. In this way, the
harmonizer helps prevent attacks which attempt to keep
the data JARs offline for unnoticed usage. If the attacker
took the data JAR offline after the harmonizer was pinged,
the harmonizer still has the error correction information
about this access and will quickly notice the missing record.

In case of corruption of JAR files, the harmonizer will
recover the logs with the aid of Reed-Solomon error
correction code [45]. Specifically, each individual logging
JAR, when created, contains a Reed-Solomon-based encoder.
For every n symbols in the log file, n redundancy symbols are
added to the log harmonizer in the form of bits. This creates
an error correcting code of size 2n and allows the error
correction to detect and correct n errors. We choose the Reed-
Solomon code as it achieves the equality in the Singleton
Bound [36], making it a maximum distance separable code
and hence leads to an optimal error correction.

The log harmonizer is located at a known IP address.
Typically, the harmonizer resides at the user’s end as part of
his local machine, or alternatively, it can either be stored in
a user’s desktop or in a proxy server.

5.3.2 Log Correctness

For the logs to be correctly recorded, it is essential that the
JRE of the system on which the logger components
are running remain unmodified. To verify the integrity of
the logger component, we rely on a two-step process: 1) we
repair the JRE before the logger is launched and any kind of
access is given, so as to provide guarantees of integrity of
the JRE. 2) We insert hash codes, which calculate the hash
values of the program traces of the modules being executed
by the logger component. This helps us detect modifica-
tions of the JRE once the logger component has been
launched, and are useful to verify if the original code flow
of execution is altered.

These tasks are carried out by the log harmonizer and the
logger components in tandem with each other. The log

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 561

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

harmonizer is solely responsible for checking the integrity

of the JRE on the systems on which the logger components

exist before the execution of the logger components is

started. Trusting this task to the log harmonizer allows us to

remotely validate the system on which our infrastructure is

working. The repair step is itself a two-step process where

the harmonizer first recognizes the Operating System being

used by the cloud machine and then tries to reinstall the

JRE. The OS is identified using nmap commands. The JRE is

reinstalled using commands such as sudo apt install

for Linux-based systems or $ <jre>.exe [lang=] [s]

[IEXPLORER=1] [MOZILLA=1] [INSTALLDIR=:]

[STATIC=1] for Windows-based systems.
The logger and the log harmonizer work in tandem to

carry out the integrity checks during runtime. These

integrity checks are carried out using oblivious hashing

[11]. OH works by adding additional hash codes into the

programs being executed. The hash function is initialized at

the beginning of the program, the hash value of the result

variable is cleared and the hash value is updated every time

there is a variable assignment, branching, or looping. An

example of how the hashing transforms the code is shown

in Fig. 3.
As shown, the hash code captures the computation

results of each instruction and computes the oblivious-hash

value as the computation proceeds. These hash codes are

added to the logger components when they are created.

They are present in both the inner and outer JARs. The log

harmonizer stores the values for the hash computations.

The values computed during execution are sent to it by the

logger components. The log harmonizer proceeds to match

these values against each other to verify if the JRE has been

tampered with. If the JRE is tampered, the execution values

will not match. Adding OH to the logger components also

adds an additional layer of security to them in that any

tampering of the logger components will also result in the

OH values being corrupted.

6 END-TO-END AUDITING MECHANISM

In this section, we describe our distributed auditing

mechanism including the algorithms for data owners to

query the logs regarding their data.

6.1 Push and Pull Mode

To allow users to be timely and accurately informed about
their data usage, our distributed logging mechanism is
complemented by an innovative auditing mechanism. We
support two complementary auditing modes: 1) push
mode; 2) pull mode.

Push mode. In this mode, the logs are periodically
pushed to the data owner (or auditor) by the harmonizer.
The push action will be triggered by either type of the
following two events: one is that the time elapses for a
certain period according to the temporal timer inserted as
part of the JAR file; the other is that the JAR file exceeds the
size stipulated by the content owner at the time of creation.
After the logs are sent to the data owner, the log files will be
dumped, so as to free the space for future access logs. Along
with the log files, the error correcting information for those
logs is also dumped.

This push mode is the basic mode which can be adopted
by both the PureLog and the AccessLog, regardless of
whether there is a request from the data owner for the log
files. This mode serves two essential functions in the
logging architecture: 1) it ensures that the size of the log
files does not explode and 2) it enables timely detection and
correction of any loss or damage to the log files.

Concerning the latter function, we notice that the
auditor, upon receiving the log file, will verify its crypto-
graphic guarantees, by checking the records’ integrity and
authenticity. By construction of the records, the auditor,
will be able to quickly detect forgery of entries, using the
checksum added to each and every record.

Pull mode. This mode allows auditors to retrieve the logs
anytime when they want to check the recent access to their
own data. The pull message consists simply of an FTP pull
command, which can be issues from the command line. For
naive users, a wizard comprising a batch file can be easily
built. The request will be sent to the harmonizer, and the
user will be informed of the data’s locations and obtain an
integrated copy of the authentic and sealed log file.

6.2 Algorithms

Pushing or pulling strategies have interesting tradeoffs. The
pushing strategy is beneficial when there are a large
number of accesses to the data within a short period of
time. In this case, if the data are not pushed out frequently
enough, the log file may become very large, which may
increase cost of operations like copying data (see Section 8).
The pushing mode may be preferred by data owners who
are organizations and need to keep track of the data usage
consistently over time. For such data owners, receiving the
logs automatically can lighten the load of the data
analyzers. The maximum size at which logs are pushed
out is a parameter which can be easily configured while
creating the logger component. The pull strategy is most
needed when the data owner suspects some misuse of his
data; the pull mode allows him to monitor the usage of his
content immediately. A hybrid strategy can actually be
implemented to benefit of the consistent information
offered by pushing mode and the convenience of the pull
mode. Further, as discussed in Section 7, supporting both
pushing and pulling modes helps protecting from some
nontrivial attacks.

562 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 3. Oblivious hashing applied to the logger.

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

The log retrieval algorithm for the Push and Pull modes
is outlined in Fig. 4.

The algorithm presents logging and synchronization
steps with the harmonizer in case of PureLog. First, the
algorithm checks whether the size of the JAR has exceeded a
stipulated size or the normal time between two consecutive
dumps has elapsed. The size and time threshold for a dump
are specified by the data owner at the time of creation of the
JAR. The algorithm also checks whether the data owner has
requested a dump of the log files. If none of these events has
occurred, it proceeds to encrypt the record and write the
error-correction information to the harmonizer.

The communication with the harmonizer begins with a
simple handshake. If no response is received, the log file
records an error. The data owner is then alerted through

e-mails, if the JAR is configured to send error notifications.
Once the handshake is completed, the communication with
the harmonizer proceeds, using a TCP/IP protocol. If any of
the aforementioned events (i.e., there is request of the log
file, or the size or time exceeds the threshold) has occurred,
the JAR simply dumps the log files and resets all the
variables, to make space for new records.

In case of AccessLog, the above algorithm is modified by
adding an additional check after step 6. Precisely, the
AccessLog checks whether the CSP accessing the log
satisfies all the conditions specified in the policies pertain-
ing to it. If the conditions are satisfied, access is granted;
otherwise, access is denied. Irrespective of the access
control outcome, the attempted access to the data in the
JAR file will be logged.

Our auditing mechanism has two main advantages.
First, it guarantees a high level of availability of the logs.
Second, the use of the harmonizer minimizes the amount of
workload for human users in going through long log files
sent by different copies of JAR files. For a better under-
standing of the auditing mechanism, we present the
following example.

Example 5. With reference to Example 1, Alice can specify
that she wants to receive the log files once every week,
as it will allow her to monitor the accesses to her
photographs. Under this setting, once every week the
JAR files will communicate with the harmonizer by
pinging it. Once the ping is successful, the file transfer
begins. On receiving the files, the harmonizer merges
the logs and sends them to Alice. Besides receiving log
information once every week, Alice can also request the
log file anytime when needed. In this case, she just
need to send her pull request to the harmonizer which
will then ping all the other JARs with the “pull”
variable to 1. Once the message from the harmonizer is
received, the JARs start transferring the log files back to
the harmonizer.

7 SECURITY DISCUSSION

We now analyze possible attacks to our framework. Our
analysis is based on a semihonest adversary model by
assuming that a user does not release his master keys to
unauthorized parties, while the attacker may try to learn
extra information from the log files. We assume that
attackers may have sufficient Java programming skills to
disassemble a JAR file and prior knowledge of our CIA
architecture. We first assume that the JVM is not corrupted,
followed by a discussion on how to ensure that this
assumption holds true.

7.1 Copying Attack

The most intuitive attack is that the attacker copies entire
JAR files. The attacker may assume that doing so allows
accessing the data in the JAR file without being noticed by
the data owner. However, such attack will be detected by
our auditing mechanism. Recall that every JAR file is
required to send log records to the harmonizer. In
particular, with the push mode, the harmonizer will send
the logs to data owners periodically. That is, even if the data

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 563

Fig. 4. Push and pull PureLog mode.

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

owner is not aware of the existence of the additional copies
of its JAR files, he will still be able to receive log files from
all existing copies. If attackers move copies of JARs to places
where the harmonizer cannot connect, the copies of JARs
will soon become inaccessible. This is because each JAR is
required to write redundancy information to the harmoni-
zer periodically. If the JAR cannot contact the harmonizer,
the access to the content in the JAR will be disabled. Thus,
the logger component provides more transparency than
conventional log files encryption; it allows the data owner
to detect when an attacker has created copies of a JAR, and
it makes offline files unaccessible.

7.2 Disassembling Attack

Another possible attack is to disassemble the JAR file of
the logger and then attempt to extract useful information
out of it or spoil the log records in it. Given the ease of
disassembling JAR files, this attack poses one of the most
serious threats to our architecture. Since we cannot prevent
an attacker to gain possession of the JARs, we rely on the
strength of the cryptographic schemes applied to preserve
the integrity and confidentiality of the logs.

Once the JAR files are disassembled, the attacker is in
possession of the public IBE key used for encrypting the log
files, the encrypted log file itself, and the *.class files.
Therefore, the attacker has to rely on learning the private
key or subverting the encryption to read the log records.

To compromise the confidentiality of the log files, the
attacker may try to identify which encrypted log records
correspond to his actions by mounting a chosen plaintext
attack to obtain some pairs of encrypted log records and
plain texts. However, the adoption of the Weil Pairing
algorithm ensures that the CIA framework has both chosen
ciphertext security and chosen plaintext security in the
random oracle model [4]. Therefore, the attacker will not be
able to decrypt any data or log files in the disassembled JAR
file. Even if the attacker is an authorized user, he can only
access the actual content file but he is not able to decrypt
any other data including the log files which are viewable
only to the data owner.1 From the disassembled JAR files,
the attackers are not able to directly view the access control
policies either, since the original source code is not included
in the JAR files. If the attacker wants to infer access control
policies, the only possible way is through analyzing the log
file. This is, however, very hard to accomplish since, as
mentioned earlier, log records are encrypted and breaking
the encryption is computationally hard.

Also, the attacker cannot modify the log files extracted
from a disassembled JAR. Would the attacker erase or
tamper a record, the integrity checks added to each record
of the log will not match at the time of verification (see
Section 5.2 for the record structure and hash chain),
revealing the error. Similarly, attackers will not be able to
write fake records to log files without going undetected,
since they will need to sign with a valid key and the chain of
hashes will not match. The Reed-Solomon encoding used to

create the redundancy for the log files, the log harmonizer
can easily detect a corrupted record or log file.

Finally, the attacker may try to modify the Java
classloader in the JARs in order to subvert the class files
when they are being loaded. This attack is prevented by the
sealing techniques offered by Java. Sealing ensures that all
packages within the JAR file come from the same source
code [27]. Sealing is one of the Java properties, which allows
creating a signature that does not allow the code inside the
JAR file to be changed. More importantly, this attack is
stopped as the JARs check the classloader each time before
granting any access right. If the classloader is found to be a
custom classloader, the JARs will throw an exception and
halt. Further, JAR files are signed for integrity at the time of
creation, to avoid that an attacker writes to the JAR. Even if
an attacker can read from it by disassembling it—he cannot
“reassemble” it with modified packages. In case the attacker
guesses or learns the data owner’s key from somewhere, all
the JAR files using the same key will be compromised.
Thus, using different IBE key pairs for different JAR files
will be more secure and prevent such attack.

7.3 Man-in-the-Middle Attack

An attacker may intercept messages during the authentica-
tion of a service provider with the certificate authority, and
reply the messages in order to masquerade as a legitimate
service provider. There are two points in time that the
attacker can replay the messages. One is after the actual
service provider has completely disconnected and ended a
session with the certificate authority. The other is when the
actual service provider is disconnected but the session is not
over, so the attacker may try to renegotiate the connection.
The first type of attack will not succeed since the certificate
typically has a time stamp which will become obsolete at
the time point of reuse. The second type of attack will also
fail since renegotiation is banned in the latest version of
OpenSSL and cryptographic checks have been added.

7.4 Compromised JVM Attack

An attacker may try to compromise the JVM.
To quickly detect and correct these issues, we discussed in

Section 5.3 how to integrate oblivious hashing to guarantee
the correctness of the JRE [11] and how to correct the JRE
prior to execution, in case any error is detected. OH adds
hash code to capture the computation results of each
instruction and computes the oblivious-hash value as the
computation proceeds. These two techniques allow for a first
quick detection of errors due to malicious JVM, therefore
mitigating the risk of running subverted JARs. To further
strengthen our solution, one can extend OH usage to
guarantee the correctness of the class files loaded by the JVM.

8 PERFORMANCE STUDY

In this section, we first introduce the settings of the test
environment and then present the performance study of our
system.

8.1 Experimental Settings

We tested our CIA framework by setting up a small cloud,
using the Emulab testbed [42]. In particular, the test
environment consists of several OpenSSL-enabled servers:

564 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

1. Notice that we do not consider the attack on the log harmonizer
component, since it is stored separately in either a secure proxy or at the
user end and the attacker typically cannot access it. As a result, we assume
that the attacker cannot extract the decryption keys from the log
harmonizer.

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

one head node which is the certificate authority, and several
computing nodes. Each of the servers is installed with
Eucalyptus [41]. Eucalyptus is an open source cloud
implementation for Linux-based systems. It is loosely based
on Amazon EC2, therefore bringing the powerful function-
alities of Amazon EC2 into the open source domain. We
used Linux-based servers running Fedora 10 OS. Each
server has a 64-bit Intel Quad Core Xeon E5530 processor,
4 GB RAM, and a 500 GB Hard Drive. Each of the servers is
equipped to run the OpenJDK runtime environment with
IcedTea6 1.8.2.

8.2 Experimental Results

In the experiments, we first examine the time taken to create
a log file and then measure the overhead in the system.
With respect to time, the overhead can occur at three points:
during the authentication, during encryption of a log
record, and during the merging of the logs. Also, with
respect to storage overhead, we notice that our architecture
is very lightweight, in that the only data to be stored are
given by the actual files and the associated logs. Further,
JAR act as a compressor of the files that it handles. In
particular, as introduced in Section 3, multiple files can be
handled by the same logger component. To this extent, we
investigate whether a single logger component, used to
handle more than one file, results in storage overhead.

8.2.1 Log Creation Time

In the first round of experiments, we are interested in
finding out the time taken to create a log file when there are
entities continuously accessing the data, causing continuous
logging. Results are shown in Fig. 5. It is not surprising to see
that the time to create a log file increases linearly with the
size of the log file. Specifically, the time to create a 100 Kb file
is about 114.5 ms while the time to create a 1 MB file
averages at 731 ms. With this experiment as the baseline, one
can decide the amount of time to be specified between
dumps, keeping other variables like space constraints or
network traffic in mind.

8.2.2 Authentication Time

The next point that the overhead can occur is during the
authentication of a CSP. If the time taken for this
authentication is too long, it may become a bottleneck for
accessing the enclosed data. To evaluate this, the head node
issued OpenSSL certificates for the computing nodes and
we measured the total time for the OpenSSL authentication

to be completed and the certificate revocation to be checked.
Considering one access at the time, we find that the
authentication time averages around 920 ms which proves
that not too much overhead is added during this phase. As
of present, the authentication takes place each time the CSP
needs to access the data. The performance can be further
improved by caching the certificates.

The time for authenticating an end user is about the same
when we consider only the actions required by the JAR, viz.
obtaining a SAML certificate and then evaluating it. This is
because both the OpenSSL and the SAML certificates are
handled in a similar fashion by the JAR. When we consider
the user actions (i.e., submitting his username to the JAR), it
averages at 1.2 minutes.

8.2.3 Time Taken to Perform Logging

This set of experiments studies the effect of log file size on
the logging performance. We measure the average time
taken to grant an access plus the time to write the
corresponding log record. The time for granting any access
to the data items in a JAR file includes the time to evaluate
and enforce the applicable policies and to locate the
requested data items.

In the experiment, we let multiple servers continuously
access the same data JAR file for a minute and recorded the
number of log records generated. Each access is just a view
request and hence the time for executing the action is
negligible. As a result, the average time to log an action is
about 10 seconds, which includes the time taken by a user to
double click the JAR or by a server to run the script to open
the JAR. We also measured the log encryption time which is
about 300 ms (per record) and is seemingly unrelated from
the log size.

8.2.4 Log Merging Time

To check if the log harmonizer can be a bottleneck, we
measure the amount of time required to merge log files. In
this experiment, we ensured that each of the log files had
10 to 25 percent of the records in common with one other.
The exact number of records in common was random for
each repetition of the experiment. The time was averaged
over 10 repetitions. We tested the time to merge up to 70 log
files of 100 KB, 300 KB, 500 KB, 700 KB, 900 KB, and 1 MB
each. The results are shown in Fig. 6. We can observe that
the time increases almost linearly to the number of files and
size of files, with the least time being taken for merging two
100 KB log files at 59 ms, while the time to merge 70 1 MB
files was 2.35 minutes.

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 565

Fig. 5. Time to create log files of different sizes.

Fig. 6. Time to merge log files.

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

8.2.5 Size of the Data JAR Files

Finally, we investigate whether a single logger, used to
handle more than one file, results in storage overhead. We
measure the size of the loggers (JARs) by varying the
number and size of data items held by them. We tested the
increase in size of the logger containing 10 content files (i.e.,
images) of the same size as the file size increases.
Intuitively, in case of larger size of data items held by a
logger, the overall logger also increases in size. The size of
logger grows from 3,500 to 4,035 KB when the size of
content items changes from 200 KB to 1 MB. Overall, due to
the compression provided by JAR files, the size of the
logger is dictated by the size of the largest files it contains.
Notice that we purposely did not include large log files (less
than 5 KB), so as to focus on the overhead added by having
multiple content files in a single JAR. Results are in Fig. 7.

8.2.6 Overhead Added by JVM Integrity Checking

We investigate the overhead added by both the JRE
installation/repair process, and by the time taken for
computation of hash codes.

The time taken for JRE installation/repair averages
around 6,500 ms. This time was measured by taking the
system time stamp at the beginning and end of the
installation/repair.

To calculate the time overhead added by the hash codes,
we simply measure the time taken for each hash calculation.
This time is found to average around 9 ms. The number of
hash commands varies based on the size of the code in the
code does not change with the content, the number of hash
commands remain constant.

9 CONCLUSION AND FUTURE RESEARCH

We proposed innovative approaches for automatically
logging any access to the data in the cloud together with
an auditing mechanism. Our approach allows the data
owner to not only audit his content but also enforce strong
back-end protection if needed. Moreover, one of the main
features of our work is that it enables the data owner to
audit even those copies of its data that were made without
his knowledge.

In the future, we plan to refine our approach to verify the
integrity of the JRE and the authentication of JARs [23]. For
example, we will investigate whether it is possible to leverage
the notion of a secure JVM [18] being developed by IBM. This
research is aimed at providing software tamper resistance to

Java applications. In the long term, we plan to design a

comprehensive and more generic object-oriented approach

to facilitate autonomous protection of traveling content. We

would like to support a variety of security policies, like

indexing policies for text files, usage control for executables,

and generic accountability and provenance controls.

REFERENCES

[1] P. Ammann and S. Jajodia, “Distributed Timestamp Generation in
Planar Lattice Networks,” ACM Trans. Computer Systems, vol. 11,
pp. 205-225, Aug. 1993.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. ACM Conf. Computer and Comm. Security, pp. 598-
609, 2007.

[3] E. Barka and A. Lakas, “Integrating Usage Control with SIP-Based
Communications,” J. Computer Systems, Networks, and Comm.,
vol. 2008, pp. 1-8, 2008.

[4] D. Boneh and M.K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Int’l Cryptology Conf. Advances in Cryptology,
pp. 213-229, 2001.

[5] R. Bose and J. Frew, “Lineage Retrieval for Scientific Data
Processing: A Survey,” ACM Computing Surveys, vol. 37, pp. 1-
28, Mar. 2005.

[6] P. Buneman, A. Chapman, and J. Cheney, “Provenance Manage-
ment in Curated Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’06), pp. 539-550, 2006.

[7] B. Chun and A.C. Bavier, “Decentralized Trust Management and
Accountability in Federated Systems,” Proc. Ann. Hawaii Int’l Conf.
System Sciences (HICSS), 2004.

[8] OASIS Security Services Technical Committee, “Security Assertion
Markup Language (saml) 2.0,” http://www.oasis-open.org/
committees/tc home.php?wg abbrev=security, 2012.

[9] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I. Staicu, “A
Logic for Auditing Accountability in Decentralized Systems,”
Proc. IFIP TC1 WG1.7 Workshop Formal Aspects in Security and Trust,
pp. 187-201, 2005.

[10] B. Crispo and G. Ruffo, “Reasoning about Accountability within
Delegation,” Proc. Third Int’l Conf. Information and Comm. Security
(ICICS), pp. 251-260, 2001.

[11] Y. Chen et al., “Oblivious Hashing: A Stealthy Software
Integrity Verification Primitive,” Proc. Int’l Workshop Information
Hiding, F. Petitcolas, ed., pp. 400-414, 2003.

[12] S. Etalle and W.H. Winsborough, “A Posteriori Compliance
Control,” SACMAT ’07: Proc. 12th ACM Symp. Access Control
Models and Technologies, pp. 11-20, 2007.

[13] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open Framework for
Foundational Proof-Carrying Code,” Proc. ACM SIGPLAN Int’l
Workshop Types in Languages Design and Implementation, pp. 67-78,
2007.

[14] Flickr, http://www.flickr.com/, 2012.
[15] R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake Picasso:

Preventing History Forgery with Secure Provenance,” Proc.
Seventh Conf. File and Storage Technologies, pp. 1-14, 2009.

[16] J. Hightower and G. Borriello, “Location Systems for Ubiquitous
Computing,” Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001.

[17] J.W. Holford, W.J. Caelli, and A.W. Rhodes, “Using Self-
Defending Objects to Develop Security Aware Applications in
Java,” Proc. 27th Australasian Conf. Computer Science, vol. 26,
pp. 341-349, 2004.

[18] Trusted Java Virtual Machine IBM, http://www.almaden.ibm.
com/cs/projects/jvm/, 2012.

[19] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Computing and
Information Policy: Computing in a Policy Cloud?,” J. Information
Technology and Politics, vol. 5, no. 3, pp. 269-283, 2009.

[20] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a
Theory of Accountability and Audit,” Proc. 14th European Conf.
Research in Computer Security (ESORICS), pp. 152-167, 2009.

[21] R. Kailar, “Accountability in Electronic Commerce Protocols,”
IEEE Trans. Software Eng., vol. 22, no. 5, pp. 313-328, May 1996.

[22] W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The Design and
Evaluation of Accountable Grid Computing System,” Proc. 29th
IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’09),
pp. 145-154, 2009.

566 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 7. Size of the logger component.

anand
Typewritten text
www.redpel.com
+917620593389

anand
Typewritten text
www.redpel.com +917620593389

[23] J.H. Lin, R.L. Geiger, R.R. Smith, A.W. Chan, and S. Wanchoo,
Method for Authenticating a Java Archive (jar) for Portable Devices,
US Patent 6,766,353, July 2004.

[24] F. Martinelli and P. Mori, “On Usage Control for Grid Systems,”
Future Generation Computer Systems, vol. 26, no. 7, pp. 1032-1042,
2010.

[25] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and
Privacy: An Enterprise Perspective on Risks and Compliance (Theory in
Practice), first ed. O’ Reilly, 2009.

[26] M.C. Mont, S. Pearson, and P. Bramhall, “Towards Accountable
Management of Identity and Privacy: Sticky Policies and Enforce-
able Tracing Services,” Proc. Int’l Workshop Database and Expert
Systems Applications (DEXA), pp. 377-382, 2003.

[27] S. Oaks, Java Security. O’Really, 2001.
[28] J. Park and R. Sandhu, “Towards Usage Control Models: Beyond

Traditional Access Control,” SACMAT ‘02: Proc. Seventh ACM
Symp. Access Control Models and Technologies, pp. 57-64, 2002.

[29] J. Park and R. Sandhu, “The Uconabc Usage Control Model,”
ACM Trans. Information and System Security, vol. 7, no. 1, pp. 128-
174, 2004.

[30] S. Pearson and A. Charlesworth, “Accountability as a Way
Forward for Privacy Protection in the Cloud,” Proc. First Int’l
Conf. Cloud Computing, 2009.

[31] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy Manager for
Cloud Computing,” Proc. Int’l Conf. Cloud Computing (CloudCom),
pp. 90-106, 2009.

[32] A. Pretschner, M. Hilty, and D. Basin, “Distributed Usage
Control,” Comm. ACM, vol. 49, no. 9, pp. 39-44, Sept. 2006.

[33] A. Pretschner, M. Hilty, F. Schuötz, C. Schaefer, and T. Walter,
“Usage Control Enforcement: Present and Future,” IEEE Security
& Privacy, vol. 6, no. 4, pp. 44-53, July/Aug. 2008.

[34] A. Pretschner, F. Schuötz, C. Schaefer, and T. Walter, “Policy
Evolution in Distributed Usage Control,” Electronic Notes Theore-
tical Computer Science, vol. 244, pp. 109-123, 2009.

[35] NTP: The Network Time Protocol, http://www.ntp.org/, 2012.
[36] S. Roman, Coding and Information Theory. Springer-Verlag, 1992.
[37] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source

Code in C. John Wiley & Sons, 1993.
[38] T.J.E. Schwarz and E.L. Miller, “Store, Forget, and Check: Using

Algebraic Signatures to Check Remotely Administered Storage,”
Proc. IEEE Int’l Conf. Distributed Systems, p. 12, 2006.

[39] A. Squicciarini, S. Sundareswaran, and D. Lin, “Preventing
Information Leakage from Indexing in the Cloud,” Proc. IEEE
Int’l Conf. Cloud Computing, 2010.

[40] S. Sundareswaran, A. Squicciarini, D. Lin, and S. Huang,
“Promoting Distributed Accountability in the Cloud,” Proc. IEEE
Int’l Conf. Cloud Computing, 2011.

[41] Eucalyptus Systems, http://www.eucalyptus.com/, 2012.
[42] Emulab Network Emulation Testbed, www.emulab.net, 2012.
[43] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public

Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” Proc. European Conf. Research in Computer Security
(ESORICS), pp. 355-370, 2009.

[44] D.J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigen-baum, J.
Hendler, and G.J. Sussman, “Information Accountability,” Comm.
ACM, vol. 51, no. 6, pp. 82-87, 2008.

[45] Reed-Solomon Codes and Their Applications, S.B. Wicker and V.K.
Bhargava, ed. John Wiley & Sons, 1999.

[46] M. Xu, X. Jiang, R. Sandhu, and X. Zhang, “Towards a VMM-
Based Usage Control Framework for OS Kernel Integrity Protec-
tion,” SACMAT ‘07: Proc. 12th ACM Symp. Access Control Models
and Technologies, pp. 71-80, 2007.

Smitha Sundareswaran received the bache-
lor’s degree in electronics and communications
engineering in 2005 from Jawaharlal Nehru
Technological University, Hyderabad, India.
She is currently working toward the PhD degree
in the College of Information Sciences and
Technology at the Pennsylvania State Univer-
sity. Her research interests include policy for-
mulation and management for Distributed
computing architectures.

Anna C. Squicciarini received the PhD degree
in computer science from the University of Milan,
Italy, in 2006. She is an assistant professor at
the College of Information Science and Technol-
ogy at the Pennsylvania State University. During
the years of 2006-2007, she was a postdoctoral
research associate at Purdue University. Her
main interests include access control for dis-
tributed systems, privacy, security for Web 2.0
technologies and grid computing. She is the

author or coauthor of more than 50 articles published in refereed
journals, and in proceedings of international conferences and symposia.
She is a member of the IEEE.

Dan Lin received the PhD degree from National
University of Singapore in 2007. She is an
assistant professor at Missouri University of
Science and Technology. She was a postdoc-
toral research associate from 2007 to 2008. Her
research interests cover many areas in the fields
of database systems and information security.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUNDARESWARAN ET AL.: ENSURING DISTRIBUTED ACCOUNTABILITY FOR DATA SHARING IN THE CLOUD 567

anand
Typewritten text
www.redpel.com +917620593389

anand
Typewritten text
www.redpel.com +917620593389

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

